Preview

Bulletin of psychotherapy

Advanced search

Features of cognitive disorders in the dynamics of COVID-19 infection

https://doi.org/10.25016/2782-652X-2022-0-83-62-72

Abstract

Relevance. The study is relevant due to the fact that the COVID-19 infection has quickly spread across the planet and the causative agent of the disease is being actively introduced into the territory of the Russian Federation.

Intention − an analysis of publications on the features of cognitive impairment in the dynamics of COVID-19 infection in order to provide effective medical and psychological support during dynamic observation.

Methodology. When conducting the study in accordance with its purpose, scientific articles selected by the search methodology were used, published in English in the period from 2010 to 2022 in the electronic databases Google Scholar, Medline, PubMed, Cochrane review. The search query included keywords and their combinations: SARS-CoV, MERS-CoV, SARS-CoV-2, COVID-19, neuropsychiatric disorders, cognitive impairment, pandemic.

Results and Discussion. The features of cognitive impairments in the dynamics of COVID-19 infection are considered with the aim of effective medical and psychological support of the affected persons during their dispensary-dynamic observation. Due to increasing reports of central nervous system injury from COVID-19, the current epidemic is likely to be accompanied by a significant increase in the prevalence of individuals with long-term cognitive dysfunction affecting the ability of the convalescent to return to daily life, which requires a comprehensive approach to rehabilitation measures.

Conclusion. As new strains of the SARS-CoV-2 virus with a high degree of immunity evasion have recently been identified, it is quite possible that new large waves of COVID-19 infection will appear this fall and winter. The revealed data indicate that stressful events across the entire population can somewhat change the trajectory of the personality, especially in young people, which must be taken into account in the medical and psychological support of those affected by COVID-19 infection.

About the Authors

I. M. Ulyukin
Kirov Military Medical Academy
Russian Federation

Igor’ Mikhailovich Ulyukin – PhD Med. Sci., Research Associate

6, Academica Lebedeva Str., St. Petersburg, 194044 



S. G. Grigoriev
Kirov Military Medical Academy
Russian Federation

Stepan Grigor’evich Grigoriev – D. Med. Sci. Senior Research Associate

6, Academica Lebedeva Str., St. Petersburg, 194044 



E. S. Orlova
Kirov Military Medical Academy
Russian Federation

Elena Stanislavovna Orlova – PhD Med. Sci., Senior Research Associate

6, Academica Lebedeva Str., St. Petersburg, 194044 



A. A. Sechin
Kirov Military Medical Academy
Russian Federation

Aleksei Aleksandrovich Sechin – Head of the research laboratory

6, Academica Lebedeva Str., St. Petersburg, 194044 



References

1. Ulyukin I.M., Kiseleva N.V., Rassokhin V.V. [et al.]. Psikhosomaticheskie narusheniya (distress, depressiya, trevoga, somatizatsiya) u lits molodogo vozrasta, perenesshikh COVID-19 [Psychosomatic disorders (distress, depression, anxiety, somatization) in young patients who have had COVID-19]. Meditsinskii akademicheskii zhurnal [Medical Academic Journal]. 2021; 21(3):63–72. DOI: 10.17816/MAJ79127 (In Russ.)

2. Baumgart M., Snyder H.M., Carrillo M.C. [et al.]. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective. Alzheimers Dement. 2015; 11(6): 718–726. DOI: 10.1016/j.jalz.2015.05.016.

3. Carfì A., Bernabei R., Landi F. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020; 324(6):603– 605. DOI: 10.1001/jama.2020.12603

4. Сattinoni L., Chiumello D., Caironi P. [et al.]. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020; 46(6):1099–1102. DOI: 10.1007/s00134-020-06033-2.

5. Chen W.W., Zhang X., Huang W.J. Role of neuroinflammation in neurodegenerative diseases (Review). Mol. Med. Rep. 2016; 13(4):3391–3396. DOI: 10.3892/mmr.2016.4948.

6. Cummings M.J., Baldwin M.R., Abrams D. [et al.]. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020; 395(10239): 1763–1770. DOI: 10.1016/S0140-6736(20)31189-2.

7. Davis D.H., Muniz-Terrera G., Keage H.A. [et al.]. Association of Delirium With Cognitive Decline in Late Life: A Neuropathologic Study of 3 Population-Based Cohort Studies. JAMA Psychiatry. 2017; 74(3):244–251. DOI: 10.1001/jamapsychiatry.2016.3423.

8. Garg S., Kim L., Whitaker M. [et al.]. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 – COVID-NET, 14 States, March 1-30, 2020. MMWR. 2020; 69(15):458–464. DOI: 10.15585/mmwr.mm6915e3.

9. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020; 396(10258):1204–1222. DOI: 10.1016/S0140-6736(20)30925-9.

10. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry. 2022; 9(2):137–150. DOI: 10.1016/S2215-0366(21)00395-3.

11. Girard T.D., Ware L.B., Bernard G.R. [et al.]. Associations of markers of inflammation and coagulation with delirium during critical illness. Intensive Care Med. 2012; 38(12):1965–1973. DOI: 10.1007/s00134-012-2678-x.

12. Goërtz Y.M.J., Van Herck M., Delbressine J.M. [et al.]. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open Res. 2020; 6(4):00542–2020. DOI: 10.1183/23120541.00542-2020

13. Guedj E., Million M., Dudouet P. [et al.]. 18F-FDG brain PET hypometabolism in post-SARS-CoV-2 infection: substrate for persistent/delayed disorders? Eur. J. Nucl. Med. Mol. Imaging. 2021; 48(2):592–595. DOI: 10.1007/s00259-020-04973-x.

14. Guzman-Martinez L., Maccioni R.B., Andrade V. [et al.]. Neuroinflammation as a Common Feature of Neurodegenerative Disorders. Front. Pharmacol. 2019; (10):1008. DOI: 10.3389/fphar.2019.01008.

15. Hampshire A., Trender W., Chamberlain S.R. [et al.]. Cognitive deficits in people who have recovered from COVID-19. EClinicalMedicine. 2021; (39):101044. DOI: 10.1016/j.eclinm.2021.101044.

16. Hsieh S.J., Soto G.J., Hope A.A. [et al.]. The association between acute respiratory distress syndrome, delirium, and in-hospital mortality in intensive care unit patients. Am. J. Respir. Crit. Care Med. 2015; 191(1):71–78. DOI: 10.1164/rccm.201409-1690OC.

17. Iadecola C., Anrather J., Kamel H. Effects of COVID-19 on the Nervous System. Cell. 2020; 183(1):16–27.e1. DOI: 10.1016/j.cell.2020.08.028.

18. Kohler O., Krogh J., Mors O., Benros M.E. Inflammation in Depression and the Potential for Anti-Inflammatory Treatment. Curr. Neuropharmacol. 2016; 14(7):732–742. DOI: 10.2174/1570159x14666151208113700.

19. Kola L., Kohrt B.A., Hanlon C. [et al.]. COVID-19 mental health impact and responses in low-income and middleincome countries: reimagining global mental health. Lancet Psychiatry. 2021. Vol. 8, N 6. P. 535–550. DOI: 10.1016/S2215-0366(21)00025-0.

20. Louapre C., Collongues N., Stankoff B. [et al.]. Clinical Characteristics and Outcomes in Patients With Coronavirus Disease 2019 and Multiple Sclerosis. JAMA Neurol. 2020; 77(9):1079–1088. DOI: 10.1001/jamaneurol.2020.2581.

21. Mao L., Jin H., Wang M. [et al.]. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6):683–690. DOI: 10.1001/jamaneurol.2020.1127.

22. Mazza M.G., De Lorenzo R., Conte C. [et al.]. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav. Immun. 2020; (89):594–600. DOI: 10.1016/j.bbi.2020.07.037.

23. Mcloughlin B.C, Miles A., Webb T.E. [et al.]. Functional and cognitive outcomes after COVID-19 delirium. Eur. Geriatr. Med. 2020; 11(5):857–862. DOI: 10.1007/s41999-020-00353-8.

24. Mehra M.R., Ruschitzka F. COVID-19 Illness and Heart Failure: A Missing Link? JACC Heart Fail. 2020; 8(6):512– 514. DOI: 10.1016/j.jchf.2020.03.004.

25. Merkler A.E., Parikh N.S., Mir S. [et al.]. Risk of Ischemic Stroke in Patients With Coronavirus Disease 2019 (COVID-19) vs Patients With Influenza. JAMA Neurol. 2020; 77(11):1–7. DOI: 10.1001/jamaneurol.2020.2730.

26. Oxley T.J., Mocco J., Majidi S. [et al.]. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. N. Engl. J. Med. 2020; 382(20);e60. DOI: 10.1056/NEJMc2009787.

27. Panico F., Arini A., Cantone P. [et al.]. Balint-Holmes syndrome due to stroke following SARS-CoV-2 infection: a single-case report. Neurol. Sci. 2020; 41(12):3487–3489. DOI: 10.1007/s10072-020-04860-1.

28. Patel V., Chisholm D., Parikh R. [et al.]. Addressing the burden of mental, neurological, and substance use disorders: key messages from Disease Control Priorities, 3rd edition. Lancet. 2016; 387(10028):1672–1685. DOI: 10.1016/S0140-6736(15)00390-6.

29. Reddy R.K., Charles W.N., Sklavounos A. [et al.]. The effect of smoking on COVID-19 severity: A systematic review and meta-analysis. J. Med. Virol. 2021; 93(2):1045–1056. DOI: 10.1002/jmv.26389.

30. Ritchie K., Chan D., Watermeyer T. The cognitive consequences of the COVID-19 epidemic: collateral damage? Brain Commun. 2020; 2(2):fcaa069. DOI: 10.1093/braincomms/fcaa069.

31. Robertson D.A., Savva G.M., Kenny R.A. Frailty and cognitive impairment - a review of the evidence and causal mechanisms. Ageing Res. Rev. 2013; 12(4):840–851. DOI: 10.1016/j.arr.2013.06.004.

32. Rogers J.P., Chesney E., Oliver D. [et al.]. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020; 7(7):611–627. DOI: 10.1016/S2215-0366(20)30203-0.

33. Safavynia S.A., Arora S., Pryor K.O., García P.S. An update on postoperative delirium: Clinical features, neuropathogenesis, and perioperative management. Curr. Anesthesiol. Rep. 2018; 8(3):252–262.

34. Safavynia S.A., Goldstein P.A. The Role of Neuroinflammation in Postoperative Cognitive Dysfunction: Moving From Hypothesis to Treatment. Front Psychiatry. 2019; (9):752. DOI: 10.3389/fpsyt.2018.00752.

35. Sankowski R., Mader S., Valdés-Ferrer S.I. Systemic inflammation and the brain: Novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front. Cell Neurosci. 2015; (9):28. DOI: 10.3389/fncel.2015.00028. eCollection 2015.

36. Schwartz M., Deczkowska A. Neurological disease as a failure of brain–immune crosstalk: the multiple faces of neuroinflammation. Trends Immunol. 2016; (37):668–679. DOI: 10.1016/j.it.2016.08.001.

37. Simpson R., Robinson L. Rehabilitation After Critical Illness in People With COVID-19 Infection. Am. J. Phys. Med. Rehabil. 2020; 99(6):470–474. DOI: 10.1097/PHM.0000000000001443.

38. Steardo L., Steardo L. Jr., Zorec R., Verkhratsky A. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol (Oxf). 2020; 229(3);e13473. DOI: 10.1111/apha.13473.

39. Sutin AR, Stephan Y, Luchetti M, [et al.]. Differential personality change earlier and later in the coronavirus pandemic in a longitudinal sample of adults in the United States. PLoS One. 2022; 17(9):e0274542. DOI: 10.1371/journal.pone.0274542.

40. Thakur N., Blanc P.D., Julian L.J. [et al.]. COPD and cognitive impairment: the role of hypoxemia and oxygen therapy. Int. J. Chron. Obstruct. Pulmon. Dis. 2010; (5):263–269. DOI: 10.2147/copd.s10684.

41. Tobin M.J., Laghi F., Jubran A. Why COVID-19 Silent Hypoxemia Is Baffling to Physicians. Am. J. Respir. Crit. Care Med. 2020; 202(3):356–360. DOI: 10.1164/rccm.202006-2157CP.

42. Troyer E.A., Kohn J.N., Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav. Immun. 2020; (87):34–39. DOI: 10.1016/j.bbi.2020.04.027.

43. Varga Z., Flammer A.J., Steiger P. [et al.]. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395(10234):1417–1418. DOI: 10.1016/S0140-6736(20)30937-5.

44. Vogel G. New Omicron strains may portend big COVID-19 waves. Science. 2022; 377(6614):1479. DOI: 10.1126/science.adf0777.

45. Wing Y.K, Leung C.M. Mental health impact of severe acute respiratory syndrome: a prospective study. Hong Kong Med. J. 2012; (18-3):24–27.

46. Yerlikaya D., Emek-Savaş D.D., Bircan Kurşun B. [et al.]. Electrophysiological and neuropsychological outcomes of severe obstructive sleep apnea: effects of hypoxemia on cognitive performance. Cognitive Neurodynamics. 2018: 12(5):471–480. DOI: 10.1007/s11571-018-9487-z.


Review

For citations:


Ulyukin I.M., Grigoriev S.G., Orlova E.S., Sechin A.A. Features of cognitive disorders in the dynamics of COVID-19 infection. Bulletin of psychotherapy. 2022;1(83):62-72. (In Russ.) https://doi.org/10.25016/2782-652X-2022-0-83-62-72

Views: 85


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0132-182X (Print)
ISSN 2782-652X (Online)