Longitudinal research of the dynamics of neurocognitive development in preterm and full-term infants from 5 to 24 months
https://doi.org/10.25016/2782-652X-2022-0-81-40-49
Abstract
Relevance. The relevance of the study is due to insufficient data on the early development of preterm infants without a history of local brain lesions and any somatic or neurological pathology.
Intention. To analyze development of neurocognitive functions of preterm infants during periods of maximum synapse formation in the primary sensory and prefrontal cortex of the brain, as well as during periods of decrease in this process in the above-mentioned areas of the cortex.
Methodology. A longitudinal study of neurocognitive development in preterm and full-term children aged 5 to 24 months was conducted. The study involved 24 preterm children and 51 fullterm children, who were examined at 5, 10, 14 and 24 months (with age adjustment for preterm children). Bayley Scales of Infant and Toddler Development (3rd edition) were used to assess 5 domains: cognitive development, receptive and expressive communication, fine and gross motor skills.
Results and Discussion. The preterm children demonstrated decreased neurocognitive functioning compared to their full-term peers during periods of decline in active synaptogenesis, while during periods of maximum synapse formation, preterm children demonstrated normal development.
Conclusion. The data obtained can be used to create early development programs for preterm children.
About the Authors
N. I. BakushkinaRussian Federation
Nadezhda Igorevna Bakushkina – Junior Research Associate
19, Mira Str., Ekaterinburg, 620002
E. R. Isaeva
Russian Federation
Elena Rudol’fovna Isaeva – Dr. Psychol. Sci. Prof., head of Department of General and Clinical Psychology
6-8, L’va Tolstogo Str., St. Petersburg, 197022
References
1. Dokazatel’naya meditsina [Evidence-based medicine]. Iss. 4. Ed. S.E. Bashinskii. Moskva. 2006. 901 p. (In Russ.)
2. Kuz’minykh T.U., Arutyunyan A.V., Prokopenko V.M. Novye podkhody k lecheniyu zhenshchin s ugrozoi prezhdevremennogo preryvaniya beremennosti [New approaches to the treatment of women with the threat of premature termination of pregnancy]. Vestnik Rossiiskoi assotsiatsii akusherov-ginekologov [Bulletin of the Russian Association of Obstetricians and Gynecologists]. 1997;(3):49–51. (In Russ.)
3. Nazarova A.O., Malyshkina A.I., Nazarov S.B., Bojko E.L. Faktory riska ugrozhayushchih prezhdevremennyh rodov: rezul’taty kliniko-epidemiologicheskogo issledovaniya [Risk factors for threatening preterm labor: results of a clinical and epidemiological study]. Akusherstvo i ginekologiya [Obstetrics and gynecology]. 2020;(6):43–48. DOI: 10.18565/aig.2020.6.43-48. (In Russ.)
4. Skvortsov I.A., Ermoleno N.A. Razvitie nervnoi sistemy detei v norme i patologii [Development of the nervous system of children in norm and pathology]. Moskva. 2003. 367 p. (In Russ.)
5. Skvortsov I.A. Nevrologiya razvitiya [Neurology of development]. Moskva. 2008. 544 p. (In Russ.)
6. Sostoyanie zdorov’ya beremennykh, rozhenits, rodil’nits i novorozhdennykh [The state of health of pregnant women, women in labor, puerperal women and newborns]. Rosstat [Electronic resource]. 2022. URL: https://rosstat.gov.ru/folder/13721. (In Russ.)
7. Adams-Chapman I., Heyne R., DeMauro S. [et al.]. Neurodevelopmental Impairment Among Extremely Preterm Infants in the Neonatal Research Network. Pediatrics. 2018;141(5):e20173091. DOI: 10.1542/peds.2017-3091.
8. Aylward G. Neurodevelopmental Outcomes of Infants Born Prematurely. Journal Of Developmental & Behavioral Pediatrics. 2005;26(6):427–440. DOI: 10.1097/00004703-200512000-00008.
9. Azari N., Soleimani F., Vameghi R. [et al.]. A psychometric study of the Bayley Scales of Infant and Toddler Development in Persian language children. Iranian journal of child neurology. 2017;11(1):50–56.
10. Bélanger R., Mayer-Crittenden C., Minor-Corriveau M., Robillard M. Gross Motor Outcomes of Children Born Prematurely in Northern Ontario and Followed by a Neonatal Follow-Up Programme. Physiotherapy Canada. 2018;70(3):233–239. DOI: 10.3138/ptc.2017-13.
11. Blüml S., Wisnowski J., Nelson M. Metabolic Maturation of White Matter Is Altered in Preterm Infants. Plos ONE. 2014;9(1):e85829. DOI: 10.1371/journal.pone.0085829.
12. Chang H.H. J. Larson, H. Blencowe, C.Y. [et al.]. Preventing preterm births: Analysis of trends and potential reductions with interventions in 39 countries with very high human development index. The Lancet. 2013;381(9862):223–234. DOI: 10.1016/S0140-6736(12)61856-X.
13. Fischi-Gómez E., Vasung L., Meskaldji D-E. [et al.]. Structural brain connectivity in school-age preterm infants provides evidence for impaired networks relevant for higher order cognitive skills and social cognition. Cereb. Cortex. 2015;25(9):2793–2805. DOI: 10.1093/cercor/bhu073.
14. Hanlon C., Medhin G., Worku B. [et al.]. Adapting the Bayley Scales of infant and toddler development in Ethiopia: evaluation of reliability and validity. Child: Care, Health and Development. 2016;2(5):699–708. DOI: 10.1111/cch.12371/
15. Huttenlocher P.R., Dabholkar A.S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 1997;387(2):167–78. DOI: 10.1002/(sici)1096-9861(19971020)387:2<167::aid-cne1>3.0.co;2-z.
16. Inder T.E., Warfield S.K., Wang H. [et al.]. Abnormal cerebral structure is present at term in premature infants. Pediatrics. 2005;115:286–294. DOI: 10.1542/peds.2004-0326.
17. Kapellou O., Counsell S., Kennea N. [et al.]. Abnormal Cortical Development after Premature Birth Shown by Altered Allometric Scaling of Brain Growth. Plos. Medicine. 2006;3(8):e265. DOI: 10.1371/journal.pmed.0030265.
18. Kostovic I., Jovanov-Milisevic N. The development of cerebral connections during the first 20–45 weeks’ gestation. Semin. Fetal Noonatal. Med. 2006;11:415–422. DOI: 10.1016/j.siny.2006.07.001.
19. Liu L., Johnson H.L., Cousens S., Perin J. [et al.] Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. The Lancet. 2012;379(9832):2151–2161. DOI: 10.1016/S0140-6736(12)60560-1.
20. Liu Y., Balériaux D., Kavec M. Structural asymmetries in motor and language networks in a population of healthy preterm neonates at term equivalent age: a diffusion tensor imaging and probabilistic tractography study. Neuroimage. 2010;51(2):783–788. DOI: 10.1016/j.neuroimage.2010.02.066.
21. Parikh N.A. Advanced neuroimaging and its role in predicting neurodevelopmental outcomes in very preterm infants. Semin Perinatol. 2016;40(8):Pp. 530–541. DOI: 10.1053/j.semperi.2016.09.005.
22. Ranjitkar S., Kvestad I., Strand T. [et al.]. Acceptability and Reliability of the Bayley Scales of Infant and Toddler Development-III among children in Bhaktapur, Nepal. Frontiers In Psychology. 2018;9:1–10. DOI: 10.3389/fpsyg.2018.01265.
23. Sansavini A., Guarini A., Caselli M. Preterm Birth: Neuropsychological Profiles and Atypical Developmental Pathways. Developmental Disabilities Research Reviews. 2011;17(2):Pp. 102–113. DOI: 10.1002/ddrr.1105.
24. Sansavini A., Savini S., Guarini A. [et al.] The effect of gestational age on developmental outcomes: a longitudinal study in the first 2 years of life. Child: Care, Health And Development. 2010;37(1):Pp. 26–36. DOI: 10.1111/j.1365-2214.2010.01143.x.
25. Simpson S., D’Aprano A., Tayler C. [et al.]. Validation of a culturally adapted developmental screening tool for Australian Aboriginal children: Early findings and next steps. Early Human Development. 2016;103:91–95. DOI: 10.1016/j.earlhumdev.2016.08.005.
26. Stephens B.E., Vohr B.R. Neurodevelopmental outcome of the premature infant. Pediatric Clinics of North America. 2009;56(3):631–646. DOI: 10.1016/j.pcl.2009.03.005.
27. Tau G.Z., Peterson B.S. Normal Development of Brain Circuits. Neuropsychopharmacology. 2010;35(1):147–168. DOI: 10.1038/npp.2009.115.
28. Vogel J.P., Chawanpaiboon S., Moller A.B. [et al.]. The global epidemiology of preterm birth. Best Practice & Research Clinical Obstetrics & Gynaecology. 2018;52:3–12. DOI: 10.1016/j.bpobgyn.2018.04.003.
29. Volpe J. Cerebellum of the Premature Infant: Rapidly Developing, Vulnerable, Clinically Important. Journal of Child Neurology. 2009;24(9):1085–1104. DOI: 10.1177/0883073809338067.
30. Webb S.J., Monk C.S., Nelson C.A. Mechanisms of postnatal neurobiological development: implications for human development. Dev Neuropsychol. 2001;19(2):147–171. DOI: 10.1207/S15326942DN1902_2
31. Wetherby A., Goldstein H., Cleary J. [et al.]. Early identification of children with communication disorders: Concurrent and predictive validity of the CSBS Developmental Profile. Infants & Young Children. 2003;16:161–174. DOI:10.1097/00001163-200304000-00008.
Review
For citations:
Bakushkina N.I., Isaeva E.R. Longitudinal research of the dynamics of neurocognitive development in preterm and full-term infants from 5 to 24 months. Bulletin of psychotherapy. 2022;(81):40-49. (In Russ.) https://doi.org/10.25016/2782-652X-2022-0-81-40-49